Development of Impedimetric Biosensor for Total Cholesterol Estimation Based on Polypyrrole and Platinum Nanoparticle Multi Layer Nanocomposite

نویسندگان

  • K. Singh
  • Ruchika Chauhan
  • Pratima R. Solanki
  • Tinku Basu
چکیده

A novel impedimetric biosensor was fabricated for total cholesterol sensing based on platinum nanoparticle and polypyrrole multilayer nanocomposite electrode. The Pt nanoparticles (PtNP) electrochemically deposited between two polypyrrole layers on indium tin oxide (ITO) glass plates (PtNP/PPY/ITO) have offered high-electroactive surface area and favourable microenvironment for immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) resulting in enhanced electron transfer between the enzyme system and the electrode. Impedimetric response studies of the ChEt-ChOx/PtNP/ITO nanobioelectrode exhibit improved linearity (2.5 × 10 to 6.5 × 10 M/l), low detection limit (2.5 × 10 M/l), fast response time (25 s), high sensitivity (196 Ω/mM/cm) and a low value of the Michaelis-Menten constant (Km, 0.2 M/l) with a regression coefficient of 0.997.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a platinized and ferrocene-mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system.

The preparation of a cholesterol amperometric biosensor using a platinized Pt electrode as a support for the electropolymerization of a polypyrrole film, in which cholesterol oxidase and ferrocene monocarboxylic acid (electron-transfer mediator) were co-entrapped, is described. All the biosensor preparation steps (platinization and electropolymerization) and the cholesterol determination take p...

متن کامل

Preparation of a Polypyrrole-Polyvinylsulphonate Composite Film Biosensor for Determination of Cholesterol Based on Entrapment of Cholesterol Oxidase

In this paper, a novel amperometric cholesterol biosensor with immobilization of cholesterol oxidase on electrochemically polymerized polypyrrole-polyvinylsulphonate (PPy-PVS) films has been accomplished via the entrapment technique on the surface of a platinum electrode. Electropolymerization of pyrrole and polyvinylsulphonate on the Pt surface was carried out by cyclic voltammetry between -1....

متن کامل

Application of Paper-Supported Printed Gold Electrodes for Impedimetric Immunosensor Development

In this article, we report on the formation and mode-of-operation of an affinity biosensor, where alternate layers of biotin/streptavidin/biotinylated-CRP-antigen/anti-CRP antibody are grown on printed gold electrodes on disposable paper-substrates. We have successfully demonstrated and detected the formation of consecutive layers of supra-molecular protein assembly using an electrical (impedim...

متن کامل

An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film

A new amperometric uric acid biosensor was developed by immobilizing uricase by a glutaraldehyde crosslinking procedure on polyaniline-polypyrrole (pani-ppy) composite film on the surface of a platinum electrode. Determination of uric acid was performed by the oxidation of enzymatically generated H₂O₂ at 0.4 V vs. Ag/AgCl. The linear working range of the biosensor was 2.5×10-6 - 8.5×10-5 M and ...

متن کامل

Modified Glass Carbon Electrode (GCE) Electropolymerized Polypyrrole Nanofibers with Hemoglobin (Hb) Film as a Unique Biosensor for Nitrite Determination

Abstract: In this study, we were investigated behavior the electrochemical reductionof nitrite at a hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containingpolypyrol nanofiber (ppy) films. Polypyrrole (PPy) nanofibers have been constructed onGCE applying electrochemical technique, and can to deposit diverse polymers onminiaturized electrodes with this commo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013